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Abstract 
 

This report evaluates several interpolants implemented in the Digital Image 
Correlation Engine (DICe), an image correlation software package developed by 
Sandia. By interpolants we refer to the basis functions used to represent discrete pixel 
intensity data as a continuous signal. Interpolation is used to determine intensity 
values in an image at non-pixel locations. It is also used, in some cases, to evaluate 
the x and y gradients of the image intensities. Intensity gradients subsequently guide 
the optimization process. The goal of this report is to inform analysts as to the 
characteristics of each interpolant and provide guidance towards the best interpolant 
for a given dataset. This work also serves as an initial verification of each of the 
interpolants implemented.  
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1. Summary of Findings

A summary of the results for each of the interpolants studied in this work is given in Table 1.

For each interpolant, a reference is given for a representative paper that describes the theory

and implementation (with the exception of bilinear and bicubic which are straightforward). The

fastest interpolant to evaluate is the bilinear, but it also has the highest bias error and is therefore

discouraged. The B-spline interpolants have high orders of accuracy, but they are considerably

more expensive to evaluate. All things considered, the fourth-order Keys interpolant performs the

best. The fourth-order Keys interpolant has a small bias error, negligible rotation error, and is only

slightly more expensive to compute than the bilinear interpolant. The reader should note that the

filtering properties of the Keys interpolants are not as good as the B-splines (Spline3 and Spline5),

but in general this interpolant performs quite well for all of the datasets tested. Nonetheless, the

signal to noise ratio of the Keys interpolants is much better than bilinear.

Computed Time FFT Max Bias

Interpolant D O Order S R Factor Needed Gradients Error (px) SNR (dB)

Bilinear 1 1 1.84 2 0 1.0 No FD 0.03 25

Bicubic 3 3 3.52 3 1 3.2 No FD 0.03 –

German5[5] 4 5 – 8 1 5.1 No Coefs* 0.06 15

Keys3[7] 3 3 3.52 4 1 4.4 No Coefs 0.03 38

Keys4[7] 3 4 4.78 6 1 2.9 No Coefs 0.007 40

NLVC3 1 1 – 3 -1 8.0 No Coefs** – –

NLVC5 1 1 – 5 -1 5.1 No Coefs** – –

OMOMS[1] 3 4 3.94 4 -1 16.0 Yes Coefs 0.0015 62

Deserno3[3] 2 0 1.71 3 1 1.0 No Coefs** 0.015 –

Deserno5[3] 4 0 1.54 5 1 1.6 No Coefs** 0.0009 –

Deserno7[3] 6 0 1.38 7 1 3.3 No Coefs** 0.00005 –

Spline3[14] 3 0 4.59 4 2 31.5 Yes Coefs 0.003 50

Spline5[14] 5 0 0.75 6 4 32.8 Yes Coefs 0.0002 60

Table 1. Summary of results for various interpolants. D: Degree, O: Order (for

computed order see Figure 9), S: Support size in pixels, R: Regularity (0 denotes C0

continuity). A negative value for regularity is caused by discontinuities (or kinks) in

the interpolation function. The mark “–” denotes either an unknown value or a value

not computed. FD: finite difference, Coeffs: Gradient calculated using derivatives

of the coefficients of the interpolant, *: Errors in the gradients are too high to be

useful, **: Overly diffusive, SNR: Signal to noise ratio (higher is better).

Some comments are warranted regarding the various columns of Table 1. The degree is the

polynomial degree of the basis functions. The order of accuracy defines how well the interpolated

signal matches the true signal. The support size determines how many of the neighboring pixels are

involved in the convolution. Larger support sizes greatly increase the computational expense. The
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regularity describes how smooth the interpolated signal will be. High values of regularity mean

that higher order derivatives can be computed successfully. Low values of regularity mean that

the interpolated signal will be less smooth than the input data. Fast Fourier Transforms (FFT)

are required in cases where the coefficients of the basis functions must be determined. In some of

the interpolants the coefficients are simply the pixel values so an FFT is not required. The signal

to noise ratio (SNR) defines how susceptible the interpolant is to image noise errors. Lastly, bias

errors are position errors that arise in the correlation process due to the interpolant.

We have included in this study some results from using an interpolant derived from nonlocal

vector calculus (NLVC) [4]. This is a particularly naive interpolant for several reasons. It has

three discontinuities in the interpolation kernel which decrease smoothness. Additionally, it is also

extremely diffusive and not interpolatory (the values of the interpolated signal do not match the

pixel values at the pixel locations). This interpolant was included to explore ways of bringing ideas

from signal processing to NLVC. It is not intended for use as a legitimate interpolant in its current

form. Lastly, the German5 interpolant performs extremely bad in the image correlation context

and is highly discouraged for use in DICe.

2. Motivation

The reasons this study was done are as follows:

• Bias errors are inversely dependent on the speckle size (large speckles produce smaller

errors) so the bias errors computed by the authors previously, for the experimental images,

are only valid for that particular speckle size. We needed to see how the bias errors are

affected by various speckle sizes.

• The previous investigations used a sum-squared-difference (SSD) correlation citerion, which

introduces amplitude attenuation errors as well as phase errors. In this study zero-normalized-

sum-squared-differences (ZSSD) was used to remove amplitude attenuation.

• Although some reports have looked at rotation errors in and of themselves, none have

studied the effect of interpolation-induced rotation errors on position error. This plays a

critical role in several problems of interest to Sandia so more understanding about this is

required.

• There are profound implications for the convolution-based interpolants for NLVC in terms

of the kernel properties. This study has brought out a number of useful concepts from

signal processing that have applications in NLVC.

• Lastly, we intended to perform a study where both the reference and deformed images are

synthetically generated using analytical functions rather than apply a transformation to the

reference image to get the deformed. This gives a lot better control over issues introduced

by creating synthetic images.

3. Literature Survey

A number of articles from the literature were consulted in implementing the various interpolants.

A wealth of research on the performance of each of these interpolants also exists. In this section

we point the reader to selected works for further information.
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A unifying framework for deriving interpolation methods is presented in [2]. Given the desired

polynomial order, regularity, degree, and support size, this work defines a process to derive an

interpolation kernel in a straight forward fashion. This is a great work to consult for background

information on the properties of various kernels.

In [10] the authors explore position errors introduced into the image correlation process by

various interpolants. In summary, the results showed that cubic polynomial interpolation greatly

outperforms bilinear, but quintic polynomials have a diminishing return. This work also points

out the importance of low-pass filtering to get rid of high frequency image content. An important

finding in this work is a relative measure of strain error introduced by the interpolants. The bilinear

interpolant can cause strain errors of up to 20% on average, suggesting that bilinear interpolation

should be avoided. We do not consider strain errors in this present work.

An excellent theoretical background for B-spline interpolation is presented in [13] and [14]. Both

of these works provide the necessary foundation for using B-spline interpolation in image procesing.

In terms of the use of splines for interpolation, there are a number of publications that address

optimizing the order of accuracy for the smallest support size or polynomial order. A good overview

of optimizing spline-based interpolants is given in Chapter 7 of [6]. Another such work is [5] in

which the short kernel fifth-order interpolation scheme is presented. Although the short kernel

scheme (German5) allows for better approximation on smaller supports, in the present study we

found that computing derivatives based on the optimized basis functions leads to significant errors.

For this reason, the short kernel scheme is not recommended for DIC. The idea of obtaining the

maximal order of interpolation for small support sizes is developed further in [1].

In [8], the authors compare a number of interpolation methods in terms of computational expense

and accuracy. Although this work is applied to medical imaging and not digital image correlation,

it does present a number of useful data points for comparing the various methods. Another good

comparison of interpolation methods is found in [12]. In [12], a good representation of the signal

to noise ratio of several interpolants is given. The most robust interpolants, in terms of noise, are

the optimized maximal order on minimal support (OMOMS) interpolants.

Among the various convolution-based interpolation methods, DICe has available the third and

fourth order interpolants from [7] (Keys3 and Keys4). The Keys interpolants do not require an FFT

to determine the coefficients since the coefficients are simply the values of the intensity profile at

the pixel locations. This leads to substantial decrease in computation time. A number of optimized

version of the Keys interpolants can be derived by varying a parameter α. In this work we use

α = −0.5 throughout. A similar convolution approach to interpolation is presented in [9]. In [9] the

authors investigate non-seperable imaging systems which render the Keys interpolants sub-optimal.

Lastly, in this study we have included an interpolant from the physical sciences literature used to

compute electrostatic energies of charged particles on a regular grid [3]. This was done to expand

the selection of interpolants beyond the typical options found in the signal processing literature.

It should be remarked that this interpolant is intended for distribution of energies in the Fourier

domain. It is not clear to the authors if the same FFT process used for the B-spline interpolants is

applicable here. Using constant coefficients from the time domain leads to an extremely diffusive

interpolant for wave numbers similar to common speckle patterns, but the resulting bias errors are
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exceptionally small. The overly diffusive nature of this interpolant makes it function well in the

registration process, but not for computing image gradients.

4. Synthetic Image Construction

To create the synthetic images, the following process was used:

(1) The intensity value at each pixel, Ii, in the reference image was generated using the following

profile:

Ii = Ī + 0.8Īcos(kx/π)sin(ky/π)

where Ī = 128 (for 8-bit images black is 0 and white is 255) and k is the speckle size

parameter.

(2) For the translated images the intensity profile was generated as

Ii = Ī + 0.8Īcos(k(x+ x̃)/π)sin(ky/π)

where x̃ is the prescribed translation.

(3) For the rotated images, the intensity profile was generated using a rotation matrix, R,

where

Rxx = cos(θ) ; Rxy = -sin(θ) ; Ryx = sin(θ) ; Ryy = cos(θ)

x′ = Rxxx+Rxyy ; y′ = Ryxx+Ryyy

such that

Ii = Ī + 0.8Īcos(kx′/π)sin(ky′/π)

Above, θ is the prescribed rotation.

(4) Once the analytical profiles were generated analytically, boost libraries were used to gen-

erate the tiff images.

In this way, interpolation is not necessary to create the synthetic images because the deformed

intensity profiles are generated analytically and not from deforming pixels from the reference image.

An example image is shown in Figure 1. Ordinarily the regularity of the speckle pattern would

be problematic from a registration standpoint (the speckles are not unique), but the correlation

process was seeded with values close enough to the exact solution that the iterative updates would

not jump to a nearby solution.

To make the comparison more straightforward, a simplex method was used in the correlation

instead of a gradient-based method (like the Lucas-Kinade algorithm). This removes the need

to compute image gradients which are not necessarily readily available for all of the interpolants.

Even though the image gradients are not used in the present study, we still evaluate how well each

interpolant works for computing gradients as this is needed for DIC in general.
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Figure 1. Example synthetic image with speckle size of approximately 4 pixels

(k = 2.0).

5. Phase Errors

Following the recommendations in Sutton, et. al. [11] regarding amplitude errors, the one-pixel

shift numerical experiments were done using ZNSSD for the correlation criteria instead of SSD so

that amplitude errors are removed. Figure 2 shows the position error for an incremental one-pixel

shift of the reference image for various speckle sizes. Note the wave form matches the results in

Sutton with the error being zero at the ends and mid-point and maximum at 0.25 and 0.75. The

results show that the polynomial interpolants translation error is on the order of 0.01 to 0.03 pixels

for a speckle pattern with speckles of sizes between 2 and 3 pixels. This speckle size range is typical

in practice.
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Figure 2. Phase error for one pixel translation.

Interestingly, the error is almost identical between bilinear and bicubic interpolation for the pixel

shift example. (The results were double checked to make sure this was not a plotting error.) In
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terms of bias error, the Deserno interpolants and the splines performed the best, but the fourth-

order Keys interpolant significantly decreases the bias error over the polynomial interpolants.

6. Interpolation Bias for Rotations

Although the translation bias error for various interpolants has been extensively studied, less

studies are available regarding interpolation bias for rotations. Figure 3 shows the rotation bias

error for each of the interpolants for incremental rotations from 0 degrees to 90 degrees. The bias

errors follow the familiar sin wave pattern with the errors being zero at the ends and mid-point which

is expected since at 0 degress and 90 degrees the reference and deformed images match identically.

The error being zero at 45 degrees is not yet fully understood. Note that for all interpolants and

speckle sizes, the error is below 0.001 radians or 0.05 degrees suggesting that rotation errors are

not of concern.
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Figure 3. Interpolation bias error in the computed rotation for various rotation values.

Where the weaker interpolants suffer is in the displacement error for prescribed rotations. The

displacement should be zero for this example (i.e. the position of the subset centroid does not

change), but errors are introduced by the optimization process. Figure 4 shows the position error

in x for the incremental rotations. The errors for y-position are similar, but not shown. In terms of

position error, the bilinear interpolant performs significantly poorer that the rest of the interpolants.

This is one of the main reasons bilinear interpolants should be avoided.

7. Interpolation Order Accuracy

The accuracy of each of the interpolants in terms of how well they represent the true contin-

uous solution, for the cases of speckle size 4 and 2, is shown in Figures 5 through 8. While the

polynomial, splines, Keys and OMOMS interpolants seem to capture the signal well, the NLVC

and German5 interpolants introduce discontinuities. The Deserno interpolants exhibit an overly

diffusive characteristic. Note that even if the particular interpolation scheme in question has a
7
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Figure 4. Interpolation bias error in position for various rotation values.

higher order of convergence, the error for a given speckle size to pixel size ratio may be larger than

an interpolant of lower order. The order of convergence determines how the error decreases with

increasing resolution, but not the initial error value.

The convergence rate for selected interpolants is shown in Figure 9. The slope of each of the lines

in the log-log plot determines the computed convergence rate. These values are given in Table 1.

Since for image analysis, the pixel size is fixed, the convergence study in this plot was conducted

by altering k such that the wave profile of the prescribed intensity became more and more smooth.

While this is not a formal convergence study it does shed some light on the expected order of

accuracy of the various interpolants. In general, while the measured convergence order is high

for the optimized interpolants, as the resolution improves, the order decreases significantly. This

suggests that there is a diminishing return from the optimized interpolants as the wave frequency

decreases (large speckle sizes).

8. Computing Image Gradients

A similar study was performed for computing the gradients of the prescribed intensity profile.

The accuracy of each of the interpolants for computing image gradients for the cases of speckle size

4 and 2 is shown in Figures 10 and 11. The spline, Keys, and OMOMS interpolants perform the

best for computing image gradients, while the Deserno and NLVC interpolants once again exhibit

their overly diffusive characteristics.

9. Execution Speed

For a single subset, the execution speed is fastest for the bilinear interpolation. If this is treated

as the standard (1.0), the comparative cost of all of the interpolants is shown in Figure 12. The

computation time includes the total cost to converge to the solution (all iterations). Thus, even

if one interpolant can be computed quicker for a single iteration the overall cost may be more

than another because more iterations may be required. The results in Figure 12 show that the
8
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Figure 5. Interpolation of prescribed function I(x, y), Part I: Polynomial, Deserno

and NLVC with speckle size 4
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Figure 6. Interpolation of prescribed function I(x, y), Part 2: Keys, Splines,

OMOMS and German with speckle size 4
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Figure 7. Interpolation of prescribed function I(x, y), Part I: Polynomial, Deserno

and NLVC with speckle size 2
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Figure 8. Interpolation of prescribed function I(x, y), Part 2: Keys, Splines,

OMOMS and German with speckle size 2
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Figure 9. Log-log plot of the L2-norm of the interpolation error for increasing k

(the wave frequency parameter). By interpolation error we refer to the difference

between the interpolated values of I, and the exact value of the intensity profile.

Note that for small pixel sizes, the order of accuracy significantly degrades for the

quintic spline, fourth order keys, and OMOMS interpolants.

spline interpolants are extremely expensive to compute. Typically, the argument is given that DIC

takes place off-line such that this expense is not an issue, but as DIC applications evolve (e.g. as

an integrated part of an experiment itself) computation expense becomes a critical factor. The

OMOMS interpolants are about half as expensive as the splines, but the gradients computed using

the OMOMS interpolants are not as smooth.

10. Conclusion

While it is not easy to say with absolute confidence which interpolant is best in all cases, this

document has outlined several of the strengths and weaknesses of each of the interpolants im-

plemented in DICe. It is intended that an analyst can use this information to choose the right

interpolant for a given application. For example if the noise content is high, the spline interpolants

may be worth the computational expense in exchange for a high signal to noise ratio. Clearly, the

bilinear interpolants cause a number of undesirable effects and should be avoided. In general, the

fourth-order Keys interpolant performs best given all the factors considered above and should be

the default interpolant.
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Figure 10. Image gradients calculated using various interpolants with speckle size 4
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Figure 12. Comparison of computation cost for various interpolants.
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